
1

SymboSLAM: Semantic Map Generation in a
Multi-Agent System

Brandon C. Colelough,
School of Engineering and Information Technology, University of New South Wales, Australia

Abstract—Sub-symbolic artificial intelligence methods domi-
nate the fields of environment-type classification and Simulta-
neous Localisation and Mapping. However, a significant area
overlooked within these fields is solution transparency for the
human-machine interaction space, as the sub-symbolic methods
employed for map generation do not account for the explain-
ability of the solutions generated. This paper proposes a novel
approach to environment-type classification through Symbolic
Simultaneous Localisation and Mapping, SymboSLAM, to bridge
the explainability gap. Our method for environment-type clas-
sification observes ontological reasoning used to synthesise the
context of an environment through the features found within. We
achieve explainability within the model by presenting operators
with environment-type classifications overlayed by a semantically
labelled occupancy map of landmarks and features. We evaluate
SymboSLAM with ground-truth maps of the Canberra region,
demonstrating method effectiveness. We assessed the system
through both simulations and real-world trials.

Index Terms—Environment-Type Classification, Semantic
Map, Multi-Agent System, SLAM, Ontology, Symbolic Reasoning

I. INTRODUCTION

An environment is a “broadly defined term” that refers to the
“natural or anthropogenic systems which can surround a living
or non-living entity” [1]. The symbolic constructs attributed
to environments are “created by human acts of conferring
meaning to nature and the environment” [2]. Thus, environ-
ments may be represented by symbolic concepts and described
through their physical attributes [1], [2]. This study focuses
on assigning symbolic concepts to areas of an environment by
examining the physical objects found within. Making this link
between an object and an environment type is a problem that
requires some level of human understanding present within
the methodologies for classification, as the environment labels
are complex societal constructs. Encoding this knowledge
within an architecture requires a system that can understand
the nuances and intricacies of the human world and the
relationships people draw between environmental concepts and
the objects associated with them. These manifest as challenges
in modelling an environment for the purpose of classification,
raising questions such as:

1) How can a symbolic representation of an environment be
used to classify the environment type?

2) How can an environment be transformed into a symbolic
representation?

Symbolic Artificial Intelligence (AI) is a field of study that
offers a solution to question one. It incorporates domain-level

expertise within an architecture to enable higher-order reason-
ing about concepts. An ontology is an instrument within the
field of symbolic reasoning which includes the properties and
relations of objects and ideas within a specific subject area [3].
It posits a viable solution to link the concepts of objects and
environment types. It is evident from the literature presently
available within symbolic reasoning and remote sensing fields
that the information required for enabling environment-type
classification is not readily available or easily obtainable. As
such, a method to extract information is necessary to allow
higher-order classification of the environment. Simultaneous
Localisation and Mapping (SLAM) offers a solution having
excellent applicability over a range of domains for which many
systems have already demonstrated promising results [4]–
[6]. Joo et al. demonstrated that it is possible to generate
semantic understanding from defined spatial relations [7].
The incorporation of semantic knowledge to features in the
environment offered a new method to describe SLAM situ-
ations transparently. The overarching motivation to research
environment-type classification through symbolic reasoning
was to transparently describe complex environments with a
simple graphical representation. Transparency within a system
can be achieved through the tenets of “interpretability, explain-
ability and predictability” and is the “overarching concept”
required for a human-machined teaming environment trust
architecture [8]. Using an ontology for symbolic reasoning
offers the opportunity to increase the explainability and inter-
pretability of the classification result, enabling transparency to
be maintained within the human-machine teamed environment.
Thus, transparency within a system may be achieved by
conducting high-level environment classification through the
contextualisation of objects found within and displaying these
classifications as a 2D map. Furthermore, an architecture that
utilises an ontology as the symbolic reasoning component will
be capable of encoding human constructs into the architec-
ture’s knowledge base to ensure the architecture converges
upon a solution. The identified gap in the literature leads our
research to answer the following overarching question; can a
symbolic reasoning approach for multi-agent SLAM increase
the meaning for 2D maps? The objectives of this research are:

RO1 Determine whether intelligent edge agents on a Multi-
Agent System (MAS) can extract environmental features
and share information with a centralised control agent.

RO2 Determine if a centralised control structure with intelli-
gent MAS agents can conduct SLAM.

RO3 Determine if a symbolic representation of the environ-
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ment is suitable to build classified environment-type 2D
maps.

The main contribution of this study is a transparent method
for environment-type classification, achieved through explain-
ability within the map generation process. This study presents
system explainability for environment-type reasoning through
semantically labelled landmarks as an occupancy map. Fur-
thermore, this study provides ontological reasoning of the
semantically labelled landmarks as a method to conduct
environment-type classification.

The remainder of this paper is organised as follows. First,
in Section II, we review methods for feature extraction and
spatial recognition on a MAS and symbolic reasoning through
ontological design. The problem space is then constructed to
describe both the project sub-tasks and how they relate to
the overall aim of the proposed architecture. Next, Section III
introduces the proposed solution to the main research question
and research sub-objectives, with development steps in the
appendix. Following this within Section IV, the metrics for
success across all project contributions are introduced, and the
method to evaluate the proposed SymboSLAM architecture is
discussed. Finally, in Section V the simulated and measured
experiments conducted with the SymboSLAM architecture are
presented alongside the results gathered with supplementary
information provided in the appendix and externally. We
then conclude this paper with a discussion on the success
of the proposed architecture in Section VI, followed by the
proposal of further research questions for further investigation
in Section VII.

II. BACKGROUND

A. Environment Type Classification

Environment type classification is a field of study presently
dominated by the implementation of remote sensing applica-
tions utilised as the primary source of information. These re-
mote sensing techniques deal with “high-resolution geospatial
data” to “find the land cover classes” and are broadly sorted
into supervised, unsupervised and object-orientated classifica-
tion techniques [9]. Semi-supervised classification techniques
of hyperspectral images are used by Wang et al. [10] to classify
non-urban regions of China, with a reported accuracy above
90%. Zhang et al. [11] compare land cover classification meth-
ods in an arid/semi-arid environment that demonstrates the
ability of object-orientated classification techniques to differ-
entiate between populated and non-populated areas. However,
the recent focus of remote sensing applications has been to
classify urban and built-up areas. Qiao et al. [12] demonstrate
the use of classical techniques for object classification, such
as a Support Vector Machine (SVM), to classify components
of an urban area utilising high-resolution remote sensing
imagery. Kanade et al. [13] demonstrate rapid mapping of
urban regions for a high-density metropolitan city with varying
built-up patterns, using remotely sensed data gathered from a
synthetic aperture radar system. Li et al. [14] utilise aerial
Light Detection and Ranging (LIDAR) with charge-coupled
device (CCD) imagery to demonstrate an analytic hierarchy
process for land area coverage classification, with the ability

to differentiate between Urban and Non-Urban areas. Djamel
et al. [15] evaluate classification schemes for urban area
extraction using Landsat imagery and demonstrated that deep
learning techniques outperformed traditional techniques for
classification. Wen-mei Li et al. [16] compare a range of
deep learning techniques to solve the environment-type clas-
sification problem in urban and built-up areas utilising remote
sensing imagery. Man Li et al. [17] introduce hierarchical
structuring to the land coverage classification problem to
differentiate between land and water coverage from remote
sensing imagery.

B. Place Recognition

Place recognition is the ability “to recognise the exact place
despite significant changes in appearance and viewpoint” [18]
within a map. Place recognition is commonly used throughout
the literature to enable feature localisation within an occu-
pancy grid [19]. Barros et al. [19] compare deep learning
approaches for place recognition, utilising methods on the
spectrum of supervised to unsupervised learning categories.
This survey also explores end-to-end frameworks used to
address a domain translation problem for place recognition,
for which NetVlad [20] offer the most considerable impact.
The survey presents three approaches to supervised learning,
consisting of holistic, landmark and region based. From this,
landmark-based supervised training effectively solves appear-
ance change, perceptual aliasing and viewpoint changing. The
techniques demonstrated by Sunderhauf et al. [21] employ
convolutional neural network (CNN) feature extractors to
develop semantic-based feature labels used for identifying
potential landmarks in a visual feed. Rosinol et al. [4], and
Lajoie et al. [22] utilise these extracted landmarks to generate
a pose graph of key features within an environment.

C. Map Matching

Map matching techniques are required in SLAM algorithms,
enabling updates to prior environment models. As Williams
et al. [23] described, there are traditionally three main ap-
proaches: map-to-map, image-to-image and image-to-map. In-
tegrating across a Gaussian distribution representation of a
6D voxels of an RGB-D sensor or point cloud system is one
method to achieve spatial matching. Shuien et al. [24] detail a
networked solution for feature merging through map alignment
and data association for applications with SLAM solutions
on a MAS. Yufeng et al. [25] present a semantic labelling
system integrated with spatial map matching to generate a
more effective SLAM result for loop closure. MurArtal et
al. [26] demonstrate SLAM techniques that utilised critical
frame solutions that allowed map matching to occur as a
data insertion into a graph rather than the spatial matching
techniques previously used. The architecture developed by
Andersone [27] extended this, allowing for cross-platform map
merging between platforms that did not share the same sub-
mapping techniques through semantic representation for com-
mon understanding. Kong et al. [28] demonstrate a ConvNet
landmark-based visual place recognition system that utilises
sequence search and hashing-based landmark indexing, which

Page 2



significantly increases the efficiency of the map-matching pro-
cess. The place recognition architecture designed by Garg et
al. [29]conducts map matching through feature comparison by
employing a semantic structure to generate an understanding
of features. This system used CNN-based key-point matching,
utilising semantic filtering and dense descriptor weighting to
allow a place search procedure leading to a candidate match
selection function.

D. Ontology and Symbolic Reasoning

Symbolic AI is the term used for several related
AI methods that reason about problems using high-level
human-understandable representations (symbols) [3]. As Jean-
Baptiste [3] describes, an ontology is a “set of entities,
which can be classes, properties, or individuals”, representing
“complex knowledge sets about things and their relations”.
One use of an ontology is to standardise the knowledge base
of a specific domain and allow readability by humans and
machines, as has been demonstrated by Baxter et al. [30].
Gomez-Perez [31] describes that the standard components of
an ontology (O) are its instances (I), concepts (C), attributes
(a), and the relationships (R) between them. Axioms (A)
are developed within the ontology to generate assertions to
describe the overall theory of the ontology for its application,
thereby incorporating domain-level knowledge within the on-
tology. An ontology can be defined as the five-tuple [32]:

O =< C,R, a, I, A > . (1)

An application of an ontology explored by Tenorth et
al. [33] is to standardise the semantic representation of lan-
guage services available to cognitive agents within a system
and create an ecosystem where knowledge between agents and
operators is shared. This semantic representation of objects
within the symbolic domain is essential for a shared language
between individuals, required for communication to exist
within a system [30]. Furthermore, enabling this communica-
tions layer within a system furthers the system’s capabilities
to explain agent actions and hence provide explainability to
an operator. Hepworth et al. [8] explore the concept of system
transparency and operator understanding throughout the pro-
posed Human-Swarm-Teaming Transparency and Trust Archi-
tecture, asserting that system interpretability and explainability
are key facets underpinning the ability of a system to provide
transparency for agent actions. Utilising these ontologies pro-
vides a method to share semantic knowledge, promoting bidi-
rectional transparency to cognitive agents, be they artificial or
human [32]. This transparency provides situational awareness
of an autonomous agent’s actions, decisions, behaviours, and
intentions to other agents within the system [34]. Furthermore,
as an ontology provides transparency and explainability within
a system, it may enable agents’ joint function within MAS to
complete a central role [35]. Hence, an ontology may provide
a semantic understanding of the world to the system, enabling
a communication layer with cognitive agents through shared
language services, thereby providing system transparency.

Many fields have applied ontologies to incorporate expert-
level domain knowledge into symbolic solutions. Utilising

these hierarchical ontologies for guided learning in sub-
symbolic systems is a concept explored by Campbell [36].
This application enables a sub-symbolic system to reason on
abstract concepts and reduce the dimensionality of a problem
space (through partitioning) by applying prior knowledge to
a learning system; see, for example, Hepworth [37], where a
hybrid approach to activity recognition is detailed that fuses
both data- and knowledge-driven (ontological) approaches to
the activity recognition problem space in the machine learn-
ing domain. The RoboEarth framework [33], [38] proposed
a system that inherently integrates a knowledge base with
visual SLAM, allowing a more accurate representation of
the environment and recognition of the objects found within.
The Triplet Ontological Semantic Model (TOSM) [7] utilised
short and long-term memory with a static ontology to create
an on-demand ontological knowledge graph representing an
environment in the symbolic domain. The abstract map data
structure developed by Talbot et al. [39] incorporated symbolic
spatial information (such as signs) into the SLAM problem to
create “malleable spatial models for unseen places”, producing
navigation results comparable to the ability of humans. Control
agents were utilised within the HST-3 architecture [8] to
mitigate against heterogeneous knowledge sets produced by
a swarm, which hinders convergence to a central solution.
The current, most advanced ontology designed specifically for
SLAM tasks developed by Cornejo-Lupa et al. [40] combines
data from a range of ontology sets to achieve superiority
at the domain knowledge, lexical and structural levels. The
onto4MAT is the first attempt to design an ontology for multi-
agent teaming [32] systematically. It enables an operator to
provide an intent as tasks to a multi-agent system and for the
agents to provide feedback to the operator.

E. Critical Assessment of Symbolic Approaches for Environ-
ment Type Classification

The present literature on environment-type classification
relies heavily on remote sensing techniques to provide a
high-fidelity overview of an area. Current technology in this
field utilises techniques similar to those found within the
object detection realm to classify environments through pattern
recognition from these area overviews. However, little to
no literature on symbolic approaches for environment-type
classification. Furthermore, there is little to no literature on
utilising SLAM techniques for environment-type classification.
The SymboSLAM architecture introduces a method that com-
bines the feature extraction strengths available to sub-symbolic
AI architectures with symbolic approaches for reasoning to
develop a system capable of conducting environment-type
classification, thereby bridging this gap within the literature.

III. METHODOLOGY

A. Project Overview and Scope

The SymboSLAM architecture is a hybrid edge-driven con-
text reasoning approach for use on a MAS of intelligent edge
agents. This architecture produces environment-type classifi-
cations for an area, presented as 2D ground maps with features
and landmarks represented symbolically. Environment-type
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classification is made possible by transforming the environ-
ment into a set of state-space variables that are semantically
queryable. Subtasks 1-3 below show the general scheme for
this transformation:
T1 Feature extraction. This sub-task enables the system

to extract useful information from the environment and
generate an information pipeline. The edge agents on the
MAS architecture achieve this through feature extraction
and localisation.

T2 State Space Maps. This task takes the information
pipeline from T1 and generates useful semantically la-
belled maps. Both the edge agents at an individual level
and the control agent at a collective level conduct this
subtask. This task is deployed on a MAS and is achieved
through map-matching / map-merging techniques.

T3 Ontology. This sub-task takes the semantically labelled
state space representations of the environment developed
from T2 and formulates the labels for segments of
the presently mapped environment. The control agent
achieves this task through an ontology to achieve sym-
bolic reasoning and hence enable transparency in the
meaningfully labelled maps of the environment.

We propose a hierarchical structure with edge agents rea-
soning about their environment, employing sensor-based and
visual data sources. The proposed architecture utilises a blend
of sub-symbolic and symbolic reasoning techniques. First, sub-
symbolic AI modules are used for object detection to achieve
feature extraction. Next, the extracted features are semantically
labelled and placed within a pose graph, transforming the
environment into a set of queryable state space variables.
Finally, a symbolic AI module for context reasoning then
works to infer the environment type of segmented portions
of a map on a collectively referenced coordinate system. The
symbolic component queried to determine the environment
type is an ontology.

B. Edge Agent Search Method

The simulated implementation utilises a random walk search
strategy that extends the random-tree search described by
Washburn [41] to introduce reactionary and long-range co-
ordinated targeting strategies through movement incentives to
achieve a more significant distribution level for higher area
coverage. The proposed hierarchical control agent architecture
shown in Figure 5 will coordinate the swarming movement of
the edge agents through movement incentives similar to the
shepherding behaviour presented by Hepworth et al. [42] to ef-
fectively disperse the search agents throughout an environment
for target search and SLAM. A human operator was utilised
as the cognitive agent for search methodology to instantiate
the edge agent architecture on a physical device.

C. Feature Extraction

The CNN feature extraction submodule detects 56-class ob-
jects selected to model the Canberra landscape across the seven
possible environment types available. Feature abundance in the
environment and access to objects in existing datasets were

the determining factors for selection into the SymboSLAM
custom dataset. Image-classification pairs were taken from 10
of the most popular datasets available. These were combined
with the SymboSLAM dataset to generate 200k, 12k, and 6k
labelled images for training, validation and testing.

D. Place Recognition

A landmark-based technique is employed at both the edge
agent and control agent architecture level to achieve the place
recognition component of the SLAM problem whilst building
a queryable state space representation of the environment.
Ground vehicles controlled by the control agent architecture
explore within an environment employing the random walk
search strategy described above, conducting locally-scaled
SLAM tasks. Each edge agent constructs an individual map
of its environment, utilising onboard Spatio-temporal sensor
feeds. The simulated ground vehicles utilise a camera, Inertial
Measurement Unit (IMU), Time of Flight (ToF) and Lidar
sensors, sequentially timestamped; the implementation on the
android application uses a camera and GPS. Each edge agent
implements a feature extraction submodule described above.
The edge agent architecture then utilises semantic knowledge
of these extracted features to sub-categorise objects into either
dynamic or static objects. Landmarks within sub-maps used
for matching represent the collected static features, and both
the static and dynamic objects are utilised in later recognitions
for environment-type classification. The depth sensor is then
utilised for the simulated ground vehicles to determine the
closest of the static targets, and the edge agent will then
navigate towards it. The edge agent continues on its path
towards this target, attempting to minimise the proximity to
the target whilst maintaining the target within the entire frame
of the camera feed, as demonstrated in algorithm ??. Once
the distance between the agent and the target is minimal, the
edge agent utilises its onboard depth sensor to determine the
feature’s location relative to the agent’s location. Finally, the
feature is inserted into the edge agent’s individual map data
structure as an element within a pose graph.

E. Map Matching

A map-to-map, map-matching technique utilising landmarks
as key features within a pose-graph data structure is the
technique featured in both edge and control agent architectures
for individual and collective mapping. Figure 2 demonstrates
this functionality at the control agent level to conduct map
meshing. The control agent receives and maintains the indi-
vidual maps for each edge agent. Each of these individual
map data structures is referenced to begin at (x, y) = (0, 0).
The control agent then amends the received individual maps to
reference them on the collective map referencing plane, as the
control agent knows the true starting location of each edge
agent. The edge agents’ map features are then merged onto
the control agents’ map utilising the landmark description and
believed place. The control agent compares the landmark de-
scriptor of each new landmark received with all features within
some radius a within the control agent’s map to determine
whether they are semantically similar. If they are semantically
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Fig. 1: SymboSLAM Edge Agent architecture for a simulated robotic platform. Note that the physical instantiation of an edge
agent holds the same basic topology but utilises GPS instead of an IMU.

similar, the feature with the highest confidence is the new
landmark, and this landmark position is the average of the
two previous landmark positions. Suppose the two landmarks
are not semantically similar, depending on the tolerance of
feature proximity and the feature confidence. Then, the new
landmark will either be added to the pose graph as a new entry
or discarded. The discarded landmarks are stored, and if there
are greater than two discarded landmarks within close spatial
proximity (tolerance again specified by operator) with similar
classes, then the landmark at that position will be updated with
the discarded feature.

F. SymboSLAM Ontology

The SymboSLAM ontology, depicted in Figure 3, is de-
signed for the SymboSLAM architecture. This ontology has
domain-level knowledge for environment contextualisation and
subsets of the Onto4MAT [32] and OntoSLAM [40] ontolo-
gies for swarm control and SLAM problems. This ontology
enables bidirectional communication between all cognitive
agents (edge, control, operator) by allowing the system to
conduct SLAM tasks with symbolic representations. A single
control agent is used to ensure that the explainability of
a solution is converged upon, enabling transparency in the
developed system to foster trust by the operator.

G. Semantics Engine

Figure 4 shows the submodule responsible for environment
classification through the contextualisation of the features
found within a segment. For each segment of the partitioned
map, this module takes the feature class instance, feature class
confidence and spatial distances between each feature over a
segment. It outputs a probability distribution of environment
types for which the maximum probability within this distri-
bution is this segment’s environment type. The SymboSLAM
ontology is queried with a feature class instance to determine

the environment type superclass and the semantic proximity to
each environment superclass; note that multiple environment
types may be returned. This module intends to reward:

1) semantic closeness of feature class and environment su-
perclass;

2) spatial closeness of feature classes with alike environment
superclasses; and

3) a larger number of inferences made between feature
classes within a segment, for instance, more feature
classes identified with alike environment superclasses.

The semantics engine module penalises the spatial closeness
of feature classes with dissimilar environment superclasses.
For each feature in a map segment, the semantic proximity for
each possible feature environment super class is SP (en, fx).
The distances between each feature class within the segment is
then calculated to be d(fx, fy) and each distance is normalised
to the maximum possible distance of each segment such that
d(fx, fy) ∼ N(0, 1). The confidence that each segment is
of environment n is calculated by summing the normalised
distance between each feature node of that environment type
weighted by the confidence of each feature class:

C(en) =
∑
x

∑
y

(SP (en, fx)·fx+SP (en, fy)·fy)·(1−d(fx, fy))

(2)
The environment confidence is calculated for each environ-

ment n contained within the SymboSLAM ontology to pro-
duce a probability distribution across all possible environment
types for each segment. The confidence of environment type is
then normalised to the number of inferences made between the
features fx, fy for each environment confidence calculation so
that C(en) ∼ N(0, 1). Equation 2 above solves reward intents
one and two listed above. The semantics engine then calculates
a weighted sum for the environment confidence C(en) and the
number of inferences made for each environment confidence
calculation normalised to the maximum number of inferences
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Fig. 2: Map matching technique employed by the SymboSLAM architecture at both an individual and collective level. Note
that the nodes shown within each map are an entry within a pose graph and then displayed to the operator as a point on a 2D
occupancy map.

Fig. 3: SymboSLAM ontology. Environment types entries reflect the Canberra region. The SymboSLAM ontology also features
concepts from the OntoSLAM and ONTO4MAT ontologies to enable more effective SLAM and swarm control functionality,
respectively.

allowable for a set of segment features. This calculation solves
reward intent three and produces a probability distribution of
the likeliness of environment type. For example, for a segment
with z features, this is given by:

P (en) =
1

a
· C(en) +

1

1− a
· en(inferences)

z(z − 1)
(3)

Where a,C(en), P (en) ∼ N(0, 1) and a are specified by
the operator depending on the sparsity of feature classes within
a map, as some environment types may inherently have a low
number of features, e.g. a desert environment.

H. Grid Map Segmentation

The control agent attempts to increase the environment-type
classification probability through map segmentation methods.
Figure 6 depicts the functionality of this module (left) and
shows the output of the segmentation process (right), Which
the semantics engine module then utilises. The control agent
first identifies nine critical regions of interest (ROI) within
the map. The semantics engine then conducts environment-
type classification using this updated segmented map data
structure. If the probability distribution for environment type
classification does not return above a specified threshold, then
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Fig. 4: SymboSLAM symbolic reasoning modules. The ontol-
ogy featured is the SymboSLAM ontology.

the segment is further partitioned into four quadrants, as shown
in Segment-(2, 2) of Figure 6. This process is repeated until
one of three conditions are met. The first is if the quadrant
of a segment returns an environment classification confidence
above a specified threshold, and the next is if the quadrant is
empty. The third is if the sparsity of information within the
quadrant reduces classification performance.

I. N-Nearest Neighbour Map Segmentation

The second segmentation methodology implemented utilises
the environment probability calculation from the semantics
engine. This segmentation methodology is based on the K-
nearest-neighbour algorithm and is a novel progressive cluster-
ing algorithm. The user supplies this algorithm with a seeding
position from the control agent’s map (where to begin cluster-
ing) and a measure of momentum (how many landmarks the
algorithm skips between clustering), from which the algorithm
will conduct parses of the control agent map. The branch
segmentation method then uses the three landmarks closest
to the cluster centre to determine its environment probability
distribution. The number of landmarks within a cluster is
incremented by one until the prior environment probability
stored is larger than the posterior environment probability.

The N -Nearest neighbour algorithm aims to cluster the
entire landmark map into N previously unknown fragments,
each with a unique number of landmarks. The branch seg-
mentation algorithm then compares the neighbours of these
N fragments to merge neighbours with the same environment
classifications. The above algorithm essentially takes some
number of Landmarks L within a Map M :

M = {L0, L1, ...Lend} , where L ∈ RD (4)

And places them into a fragmented map set:

M = {F0, F1, ...Fz} (5)

Where F = {L0, L1, ...LN} and Fenv = argmax(P (en))
To ensure fragmented sections of the map did not bisect,

the control agent used a modified SVM algorithm to create
decision boundaries surrounding clusters. As map fragments
may have complex shapes, landmarks were compared as
pairs to check for bisects with landmarks from neighbouring
fragments. The modified SVM algorithm used the landmarks
immediately surrounding the bisection portion of neighbouring

fragments to draw the decision boundary. The control agent
then coordinated trade between neighbouring clusters based
on these decision boundaries.

For Fa −→ La1
, La2

and Fb −→ Lb1 , Lb2 (6)

La1
, La2

−→ line1, and Lb1 , Lb2 −→ line2 (7)

Then given line1 and line2 bisect, a decision boundary can
be drawn between two sets of landmarks from fragments A
and B:

L ∈ RD , ϕ : RD −→ RM (8)

ϕ(L) ∈ RM (9)

H : wTϕ(L) + b = 0 (10)

And the distance between the decision boundary and the
landmarks within a segment’s immediate neighbour cluster
(excluding the bisecting points) is found with:

dH(ϕ(L0)) =
|wTϕ(L0) + b|

||W ||2
(11)

The decision boundary is then updated to maximise the
minimum distance from the decision boundary hyperplane
to each landmark point in a map segment according to the
following:

W ∗ = argmax
w

1

||W ||2
[min

q
· yn · [WTϕ(Lq) + b]] (12)

J. Full SymboSLAM architecture

The SymboSLAM architecture synthesises practices from
the SLAM, swarm and symbolic domains to conduct
environment-type classification in a novel manner. The Sym-
boSLAM architecture transforms the environment into a
query-able state space representation through a Multi-Agent
System featuring a hybrid reasoning orientation. The Sym-
boSLAM architecture utilises intelligent edge agents capable
of processing information to collect data and infer knowledge
about their environment. These edge agents apply ontolog-
ically backed semantic labels to extracted features, thereby
generating symbolic representations of their environment. Sub-
symbolic methods for feature extraction are used in con-
junction with place recognition techniques to generate area
overview maps with semantic markers embedded within the
spatial information provided. Map matching techniques are
then incorporated within the architecture to merge these se-
mantically labelled individual maps produced by intelligent
edge agents into a central structure. A control agent collates
these individual maps and generates a collective map to
infer knowledge about the environment. An ontology is then
featured within a symbolic reasoning approach to take the
semantically labelled representations of the features within this
central map structure and produce a 2D map of environment-
type classifications.

Page 7



Fig. 5: SymboSLAM control agent architecture.

Fig. 6: Segmentation process for map partitioning - Segment (2,2) shows further partitioning where the confidence of
environment classification is less than a determined threshold

.

IV. ARCHITECTURE EVALUATION

Nine metrics were selected to evaluate the SymboSLAM
architecture, as shown in Table I. These evaluation metrics
reflect the specific domain from which each submodule was
derived. The evaluation metrics are described below. The stud-
ies shown in Table I reference instances from work published
within the same domain as the submodule being evaluated for
which these metrics have previously been used.

A. Multi-Agent System

The area coverage, area dispersion and time taken by the
architecture to complete are the metrics used for evaluating the
multi-agent system component of the SymboSLAM architec-
ture. These evaluation metrics were tested in simulation only,
as no robotic edge agent platforms were used for physical

instantiations. A′/A scoring as described by Washburn [41] is
the evaluation metric for area coverage, where A′ = VWt
is the searched area of the maximum possible searchable
area A. The Agent dispersion from the global centre of
mass, as described by Abbass et al. [45], was taken as the
success metric area dispersion. The dispersion was measured
at intervals of 1 second throughout the simulated trials, and
an average of this data was taken to determine agent area
dispersion. The simulated trials concluded when all objects
were discovered by an edge agent within the environments
presented. The measure of area coverage, area dispersion and
time taken to complete was calculated after the simulated trial.
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Architecture Evaluation metrics - Studies and their respective metrics
Type of metrics Studies
Multi Agent System
Area Coverage - A′/A scoring [41], [43], [44]
Area Dispersion - average dispersion measure [42], [45]
Time - average time to complete [4], [5], [7]
Simultaneous Localisation and Mapping
Feature Extraction - mAP [46]–[48]
Place Recognition - ground truth comparison [4], [21], [22], [49]
Map Matching - average error of centre offset [28], [29], [50]
Symbolics Engine
SymboSLAM Ontology - OOPS! [32], [51], [52]
Map Partitioning - IoU / Kappa Coefficient [11], [15], [16]
Area Type Classification - AP [10]–[13], [16], [17]

TABLE I: Nine metrics utilised to evaluate the SymboSLAM architecture with published studies that have previously used
these evaluation metrics

B. Simultaneous Localisation and Mapping

As the feature extraction submodule consists of a CNN
object detection system, the intersection over union (IoU) and
the mean average position (mAP) for the feature extraction
submodule were tested as this unit’s first evaluation metric.
The IoU for each bounding box for a detected object class in
a frame is:

IoU =
area of overlap
area of union

=
X ∩ Y

X ∪ Y
(13)

Where X is the detected feature bounding box, and Y is the
ground truth. The precision and recall of the model to detect
objects are given by

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (14)

where TP & FP = true & false positive, FN = false negative
The average precision is determined by finding the area

under a precision-recall curve when conducted over several
prediction outputs:

AP =

∫ 1

0

p(r) dr (15)

And lastly, the mAP is found by taking the mean of the AP
over all the feature classes for which the model is trained.

mAP =
AP1, AP2, ...APn

n
(16)

The SymboSLAM feature extraction module is evaluated
against the testing dataset of 6k images. The place recogni-
tion component of the SLAM problem is assessed through
ground truth map comparison, where maps are evaluated using
matched topology graphs. As the ground truth and generated
maps are already 2d topology graphs, their evaluation in the
method described above can be directly applied. Next, the
coverage (percentage of matching vertices between ground
truth and generated map) and global accuracy (Correctness of
positions of the matched vertices in the collective reference
frame) were determined and used as the metric for place

recognition. Lastly, the average error of centre offset is the
evaluation metric used for spatial consistency of matched
landmark pairs. The average error of centre offset is a sum of
squared error measure for the distance between the believed
location and the actual location of all landmarks within a
generated occupancy map:

Er =
1

L

L−1∑
i

√
(Lix − L(i+1)x)2 + (Liy − L(i+1)y)2 (17)

Where L is a landmark within a map.

C. Symbolic Engine

The SymboSLAM ontology was evaluated using
OOPS! [51]1 as demonstrated by Hepworth et al. [32].
This evaluation saw the checking of requirements and
competency questions and testing of the ontology in the
target application environment. The IoU and the AP between
the generated 2D environment-type classification maps and
the ground truth environment-type maps are calculated for
all 16 simulated and measured trials. The IoU was used as
the correlation coefficient (similar to a Kappa coefficient) to
determine the inter-rater reliability between the generated and
truth environment type map. The AP was used to determine
the accuracy of the symbolic engine of the SymboSLAM
architecture.

D. Simulated Evaluation

There is “little prior work on symbolic navigation of
unseen places and no relevant benchmarks for evaluating
performance” [39] and less still on applying symbolic or
sub-symbolic AI to the environment contextualisation prob-
lem. Therefore, simulated environments incorporated expert
domain-level knowledge for classifying an environment type
through contextualisation using the feature classes found
within. The SymboSLAM architecture and ontology were

1https://oops.linkeddata.es/response.jsp
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deployed on the EyeSim robotics simulation software, em-
ploying three edge agents and one control agent to conduct
environment contextualisation in real time. In addition, the
SymboSLAM SLAM modules incorporated an oracle system
to offset the errors from the simulated sensor feeds introduced
by the Unity physics engine, causing a cascading effect due
to the quasi-random dispersion SLAM algorithm. Six areas
were simulated from the Canberra region to evaluate the Sym-
boSLAM architecture within the simulated trials. These areas
include Gunghalin (mix of environment types), the airport
area (primarily non-urban), Fyshwick (industrial principally),
Kingston (primarily commercial and high-density residential),
the Train Depot area (mainly transport and services) and the
Civic City precinct (commercial principally). Each simulation
contained up to 56 separate 3D object classes, some classes
with multiple models and all features with various instances.

Fig. 7: Example simulated area using the Unity 3D environ-
ment, depicting a region of Civic in Canberra.

E. Real World Experiments
Two real-world experiments were conducted using the Sym-

boSLAM mobile phone application, acting as edge agents to
collect landmark information. These experiments were con-
ducted throughout the Civic and Gunghalin areas to showcase
the functionality of the architecture in a real-world setting.

V. RESULTS

A. Multi-Agent System
Table II shows the results for simulation area and area

coverage, average and normal dispersion and time taken for
the simulation to conclude. Note that the normal dispersion
was calculated by taking the average dispersion of all edge
agents from the GCM (column 5) and normalising it to the
maximum theoretical dispersion to the GCM.

B. Simultaneous Localisation and Mapping

The 6k image testing dataset was utilised to evaluate the
full-scale and tiny-scale CNN feature extraction module for
the simulated and real-world SymboSLAM instantiations, re-
spectively. The results for mAP, IoU and inference time are
shown in Table III. A demonstration of the full-scale simulated
instantiation is shown in Figure 8 (left) and an example of the
tiny-scale real-world instantiation is shown in Figure 8 (right),
and a full set of simulated and real-world results are available
online 2. Figure 9 shows the average error of centre offset
for discovered landmarks. The exponential style in which
this error accumulated led to the need to utilise an oracle
system to test the functionality of the remaining SymboSLAM
submodules.

Fig. 8: CNN Feature extractor predictions output from simu-
lated (left) environment and real-world (right) environments

Fig. 9: The average error of centre offset for Landmarks
discovered by Edge agents when conducting map matching
with ground truth maps for Simulations 1-6

C. Symbolic Engine

The SymboSLAM ontology was run through the Ontology
Pitfall Scanner, OOPS!. Fourteen minor pitfalls are present

2https://cloudstor.aarnet.edu.au/plus/s/0T0pZFYgeyMgMyP
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MAS Metric Results
Simulation trial Total Area (A, km2) area Searched (A′,

km2)
Area Coverage(A′/A) Avg Dispersion (km) Norm Dispersion Time (mm:ss)

01 - Gunghalin 29.5609 26.4414 89.44% 2.9945 77.88% 84:14
02 - Airport 27.8891 20.7748 74.49% 2.6738 71.60% 43:39
03 - Fyshwick 6.6667 5.5463 83.19% 0.8567 46.92 % 30:14
04 - Kingston 0.5041 0.4423 87.74% 0.2432 48.44% 14:37
05 - Train Depot 1.0976 0.9777 89.07% 0.4452 60.10% 12:43
06 - City 1.8225 1.7943 98.45% 0.3098 32.45% 40:22

TABLE II: 3 EyeSim robots were placed at equidistant points within each simulation listed. These edge agents collected feature
information and were controlled by a control agent. The simulation concluded when all features from within the environment
were discovered

CNN Feature Extraction Results
mAP IoU Inference time (ms)

SymboSLAM-Full 43.6 0.6545 154
SymboSLAM-Tiny 17.1 0.5877 842

TABLE III: Feature extraction results for Full size and tiny
size of SymboSLAM CNN object detection modules. Results
for full size obtained using NVIDIA GeForce GTX 1080 GPU
with Intel(R) Core(TM) i9-7900X CPU OS Linux. Results for
tiny size obtained using CAT s64 Pro Android Smartphone
Adreno 512 GPU Octa-core CPU OS Android 10

SymboSLAM Simulated and Measured Results
Grid Branch

AP IoU AP IoU # Features
Sim 01 - Gunghalin 48.43 0.52 38.72 0.46 3694
Meas 01 - Gunghalin 8.51 0.27 1 0.01 2209
Sim 02 - Airport 75.52 0.84 64.20 0.60 199
Sim 03 - Fyshwick 28.99 0.73 72.40 0.65 152
Sim 04 - Kingston 33.85 0.90 41.20 0.75 212
Sim 05 - Train Depot 8.16 0.90 31.99 0.31 167
Sim 06 - City 72.05 0.78 80.89 0.89 429
Meas 02 - City 19.27 0.48 1 0.01 833
Overall AP IoU
Simulated 49.7 0.69
Measured 7.4 0.19

TABLE IV: IoU and AP for Full SymboSLAM architecture
to generate 2D topo maps of environment types. Simulated
results utilised an oracle system, and measured results utilised
GPS.

within the ontology, but no critical or important pitfalls were
detected. The SymboSLAM ontology was then used with the
complete SymboSLAM architecture to conduct both simulated
and real-world trials, as shown in 10 and 11 (the remainder
of simulated trials can be found in the appendix). The IoU
and AP for the six simulated and two real-world trials are
shown in Table IV. As the granularity of the 2D topographic
environment maps generated by the SymboSLAM architecture
could be segmented into a maximum of 24x24 partitions, the
IoU and AP for the trials were calculated using all 24x24
segments for each generated environment map.

VI. DISCUSSION

A. Multi-Agent System

Table II shows that simulations with a greater level of
complexity and a higher number of features within the en-
vironment required a higher percentage of area coverage from
the entire space available. This phenomenon is most noticeable
in the area coverage difference between the Airport and City
simulation, wherein an area of ∼ 74% was required for seven

items per square km for the Airport, and ∼ 98% was required
for 238 items per square km for the city. Hence, the quasi-
random search strategy is most effective for sparsely populated
environments. Still, more complex environments would likely
benefit from implementing more thorough search strategies
such as a simple coordinated grid method. The time to finish,
and normal dispersion, are a reflection of both simulation area
size and complexity. The results from Table II describing
this are hardly surprising (larger area leads to more time
and greater dispersion), but this does demonstrate that the
long-range coordinated targeting strategies implemented are
functioning as intended.

B. Simultaneous Localisation and Mapping

The trained YOLOV4 module used for feature extraction
achieved a mAP of 14.3% and 6.6% lower than the scores
achieved by the same network when trained on the MS COCO
datasets [47] 3. The reduction in mAP and IoU is due to
the reduction in images within the training dataset (328k in
MS COCO to 200K in SymboSLAM). Other factors that may
have affected the mAP and IoU could have included dissimilar
feature types causing an underfit for low-level filters within the
model, and the reduced number of feature classes reducing
the complexity of the model. Updating the CNN feature
extractor 4 would likely improve the mAP and IoU of the
module; however, the results achieved with the custom dataset
were sufficient for the SymboSLAM architecture. Figure 8
demonstrates the effectiveness of the trained feature extractor
model in both simulation and the real-world environment.

The average error of centre offset for landmarks detected by
edge agents, shown in Figure 9, quite clearly indicate that the
SLAM component of the SymboSLAM architecture does not
yet function as intended. The recorded data shows a linear re-
lationship between increased error and simulation time due to
the compounding nature of the error in location measurement.
The maximum recorded error in distance between landmark
true and believed the location was almost 1.4 km, which is well
out of tolerance for the SymboSLAM system requirements.
The observed failure of the SLAM module is due to the
error present in the Unity (and, by extension, EyeSim) sensors
such as ImU and ToF. Compounding location error is a

3https://pjreddie.com/darknet/yolo/
4YOLOv7 was released when this article was written - see

https://paperswithcode.com/sota/real-time-object-detection-on-coco for
the latest models available
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Fig. 10: Comparison of ground truth and SymboSLAM results for ACT Gunghalin simulated and real-world area

problem-set present in the current literature for robotic SLAM
systems [19]. At the outset of the SymboSLAM project, it was
hypothesised that this problem would be negligible, as the
granularity for feature extraction was much larger than most
SLAM systems currently available, which was, however, not
the case.

As such, to ensure the system’s functionality and allow
testing of other components, an oracle system was utilised
to reveal landmarks on the map for which edge agents had
discovered that were within a tolerable distance threshold
to the true location of the landmark. The location of this
landmark was then utilised by the oracle system to essentially
’reset’ the average error of centre offset for that edge agent’s
map by adjusting the edge agent’s landmark map to align better
with this known location. Utilising a simulator / real sensors
with a much lower measurement error will alleviate this issue

for small-range areas (less than 1 square km) that are not
complex (less than ten items per square km) but are not a
viable long-term solution for the system. Many architectures
offer loop closure as a solution for SLAM error issues [26],
[53]. Notwithstanding, studies into this area have not yet
generated a system capable of amending maps on a scale posed
for the SymboSLAM problem. GPS offers a viable solution to
this issue for both complex and large areas, as demonstrated
when the system was deployed in the real environment in
experiments 1-2. Relying on a sensor such as GPS for the
SLAM module of the SymboSLAM system does, however,
heavily limit the range of applications for which the system
can be applied. Utilising the SymboSLAM architecture with
GPS on a scale conducted in the eight trials will produce viable
results.
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Fig. 11: Comparison of ground truth and SymboSLAM results for ACT Civic simulated and real-world area
.

C. Symbolic Engine

An AP and IoU of 49.7 and 0.57 for the 12 simulated trials
and 7.4 and 0.19 for the measured trials were achieved for
the environment type classification utilising the SymboSLAM
system. From Table IV, a clear relationship between the AP
and the number of features is observed across the simulated
results in that more features generate a higher AP of environ-
ment classification. An outlier to this relationship is the Airport
which achieved the highest AP due to the ground truth of this
area consisting of primarily non-urban areas, which is likely
an oversight by the ACT government planning commission.
By comparison, the sparsely populated area contained fewer
community facility features than non-urban features, i.e. the
sim had more trees than planes which highlight a shortcoming
with the symbolic component of the SymboSLAM system

- it does not take into account feature importance. When
determining the classification of an area, some features are
more important than others; for example, a skyscraper is
indicative of only a city environment, whereas a tree could
lead to many environments, as it is common in many areas.

Table IV also shows that the branch segmentation method
outperformed the grid segmentation method for all trials except
for Gunghalin due to the increased white space (unknown
area) introduced by the branch segmentation method. This
white space is present in all trials but is most noticeable
across the two measured trials in the Gunghalin simulated trial.
Whilst this may be seen as a downfall of the system, it can
also be observed as an advantage, as the branch segmentation
method does not make assumptions across areas for which
edge agents have not yet explored or for which there are no
observable features. Theoretically, the IoU obtained from the
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branch segmentation method should be lower than the grid
segmentation method, as the rigidity of the boundaries for
this method is much more flexible. However, a higher IoU
when using the branch segmentation method is not observed
within the results of Table IV except for the city simulated
trial. Feature abundance is again the reason for a decreased
IoU within the branch segmentation method, as the boundaries
between environment types are not clearly defined throughout
the remainder of the simulated environments. The AP and IoU
of all measured experiments were substantially lower than
the simulated counterpart across both the grid and branch
segmentation methods.

Figures 10 and 11 show a tendency for features to be
clustered around streets and walkways due to the increased
complexity involved with feature extraction from real-world
environments. Space is present between all the features within
the simulated environment as features extracted by the edge
agents were placed on the control agents map at a level of
homogeneity not achievable in the real world. Unknown envi-
ronments are also much more prevalent within the measured
results due to restricted and limited access areas hindering data
collection and are most prevalent in the branch segmentation
trials for the measured data collected. Hence, the IoU and
AP obtained will increase with increasing feature abundance
and perform best with the grid segmentation method. This
increased feature abundance can be easily achieved by altering
the simulated models but would likely require another platform
for data collection for measured results. Mounting the current
platform to an aerial vehicle will likely alleviate this issue as
it would obtain higher freedom of movement throughout the
environment and, as such, would be able to collect data more
homogeneously than the current method.

VII. FUTURE WORK

A. Landmark Representation

A more accurate representation of landmarks should be
incorporated into later iterations of the SymboSLAM archi-
tecture. Research looking to further this area may incorporate
more traditional methods for SLAM to achieve this.

B. Human Level Representation of Areas

Incorporating the ability to understand human navigational
aids such as signs [39] will increase the feature extraction
ability of the SymboSLAM architecture and allow for a
much richer depth of information to be accumulated about
environmental features. For example, the SymboSLAM feature
extraction modules can presently determine if an object is a
building, but distinguishing between the types of buildings
within a city is a task achievable through the understanding
of signage.

C. Simultaneous Localisation and Mapping

The issues identified above within the SLAM modules of
the SymboSLAM architecture must be addressed, and the
solutions presently being investigated throughout the SLAM
literature do not offer a viable solution for the scale of the

problem posed in this paper. However, exploring the current
oracle modules utilised for the SymboSLAM architecture
may solve the SLAM problem. For example, a solution
wherein landmarks are used in a resection formation to enable
proper landmark belief generation, and subsequent confirma-
tion through the map-matching process may be a workable
solution.

D. Hierarchical Chaining

Building a belief generation of areas at a more granular
level to be chained hierarchically may assist with improving
the robustness and reliability. Increased explainability through
an extended hierarchical chaining process may also enhance
the trustworthiness of classified areas.

VIII. CONCLUSION

This paper proposes a novel approach to symbolic SLAM
that uses symbolic reasoning through ontological design to
create 2D environment-type maps through a multi-agent sys-
tem with a hybrid orientation for contextual reasoning. The
proposed system makes use of an intelligent edge agent ar-
chitecture as well as a control agent architecture. Edge agents
conduct local SLAM tasks within the environment through
a random walk search strategy that extends the random-
tree search method to introduce reactionary and long-range
coordinated targeting. Intelligent edge agents semantically
label extracted features and localise them spatially through
place recognition, transforming the observed environment into
a queryable set of state space representations. A control
agent then receives many edge agents’ maps to amend these
maps (given the edge agent starting position) by conducting
map matching techniques through a landmark map matching
methodology to create a semantically labelled map of the
environment. The semantics engine then takes in segmented
partitions of these maps and utilises a purpose-built ontology
to generate a probability distribution of likely environments.
The SymboSLAM architecture was deployed in the Canberra
region’s simulation and the real world. It achieved an average
precision and input over union of 49.7 and 0.57 for the 12
simulated trials and 7.4 and 0.19 for the measured trials,
respectively, for the environment type classification.
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L. Mösenlechner, L. Kunze, M. Beetz, J. D. Tardós, L. Montano, and
J. M. M. Montiel, “Roboearth semantic mapping: A cloud enabled
knowledge-based approach,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 432–443, 2015. [Online]. Available:
10.1109/TASE.2014.2377791

[39] T. Ben, D. Feras, C. Peter, and W. Gordon, “Robot navigation in unseen
spaces using an abstract map,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 13, no. 4, pp. 791–805, 2021. [Online].
Available: 10.1109/TCDS.2020.2993855

Page 15

arXiv:2101.06894
https://www.mdpi.com/2076-3417/10/9/3219
https://www.mdpi.com/2076-3417/10/9/3219
https://arxiv.org/abs/2103.06443
https://arxiv.org/abs/2106.10458
https://arxiv.org/abs/2106.10458
10.1109/TPAMI.2017.2711011
10.1109/TPAMI.2017.2711011
https://doi.org/10.1109/LRA.2020.2967681
https://doi.org/10.1109/LRA.2020.2967681
https://www.sciencedirect.com/science/article/pii/S0921889009000876
10.1109/TRO.2017.2705103
https://www.mdpi.com/2218-6581/8/3/74
https://www.mdpi.com/2218-6581/8/3/74
10.1109/ACCESS.2019.2901984
https://doi.org/10.1177/0278364919839761
https://doi.org/10.1177/0278364919839761
10.48550/ARXIV.2203.12955
https://arxiv.org/abs/2203.12955
https://arxiv.org/abs/2203.12955
10.1109/ICRA.2012.6224812
https://doi.org/10.1080/1463922X.2017.1315750
https://doi.org/10.1177/0018720819879273
https://doi.org/10.1177/0018720819879273
10.1109/TASE.2014.2377791
10.1109/TCDS.2020.2993855


[40] M. A. Cornejo-Lupa, Y. Cardinale, R. Ticona-Herrera, D. Barrios-
Aranibar, M. Andrade, and J. Diaz-Amado, “Ontoslam: An ontology
for representing location and simultaneous mapping information for
autonomous robots,” Robotics, vol. 10, no. 4, 2021. [Online]. Available:
https://www.mdpi.com/2218-6581/10/4/125

[41] A. R. Washburn, Search and detection, 1st ed. Operations Research
Department, Naval Postgraduate School, 1981.

[42] A. J. Hepworth, K. J. Yaxley, D. P. Baxter, K. F. Joiner, and H. Abbass,
“Tracking footprints in a swarm: Information-theoretic and spatial centre
of influence measures,” in 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), 2020, pp. 2217–2224.

[43] S. Duncany, G. Estrada-Rodriguez, J. Stocek, M. Dragone, P. A. Vargas,
and H. Gimperlein, “Efficient quantitative assessment of robot swarms:
coverage and targeting levy strategies,” IEEE Transactions on Robotics,
2022.

[44] Y. Chen, S. Huang, and R. C. Fitch, “Active slam for mobile robots
with area coverage and obstacle avoidance,” IEEE/ASME Transactions
on Mechatronics, vol. 25, pp. 1182–1192, 2020.

[45] H. Abbass and R. Hunjet, SHEPHERDING UXVS FOR HUMAN-
SWARM TEAMING, 1st ed. SPRINGER NATURE, 2022.

[46] P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection and
recognition using one stage improved model,” in ECCV, 03 2020, pp.
687–694.

[47] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” ArXiv, vol. abs/2004.10934,
2020.

[48] W. Wenxin, G. Liang, G. Hongli, Y. Zhichao, L. Yuekai, and
C. Zhiqiang, “Yolo-slam: A semantic slam system towards dynamic
environment with geometric constraint,” Springer, 2022. [Online].
Available: 10.1007/s00521-021-06764-3

[49] S. Schwertfeger and A. Birk, “Evaluation of map quality by matching
and scoring high-level, topological map structures,” 2013 IEEE Interna-
tional Conference on Robotics and Automation, pp. 2221–2226, 2013.

[50] S. Garg, N. Sünderhauf, and M. Milford, “Lost? appearance-
invariant place recognition for opposite viewpoints using visual
semantics,” CoRR, vol. abs/1804.05526, 2018. [Online]. Available:
http://arxiv.org/abs/1804.05526
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